with C_0 determined to an accuracy of one part in 10⁷ for diameter ratios of 0.1 to 0.95. (Note that numerical errors in Smythe's earlier paper are corrected in a later paper.⁴)

In Fig. 1 we compare the various expressions for Fby plotting (F-1) as a function of $(d/D)^3$ on logarithmic coordinates. Also shown is the semiempirical equation presented by DeBlois and Bean as the best fit⁶ (at small diameter ratios) of their experimental results,

$$F_6 = 1 + 0.73 (d/D)^3$$
. (6)

This figure shows that (1) Smythe's numerical results F_5 agree well with the experimental data F_6 at small $(d/D)^3$; (2) DeBlois and Bean's limiting theory F_4 does not coincide with F_5 , as $(d/D)^3 \rightarrow 0$; and (3) F_3 converges with the numerical results as $(d/D)^3 \rightarrow 1$, the error being less than -8% in F at $(d/D)^3=0.86$. Table I compares representative F values obtained from Eqs. (4)-(6).

Smythe also presents calculations for spheroids of eccentricity $\frac{1}{2}$ (prolate) and 2 (oblate), the axis of revolution coinciding with the pore axis. His results are unreliable for the prolate spheroid as $(d/D)^3 \rightarrow 1$ because of convergence problems; however, in this region one can use the results obtained from an area integration [the basis of Eq. (3)] to obtain

$$F_{7} = \frac{1}{\epsilon} (D/d)^{3} \left\{ \frac{\sin^{-1}(d/D)}{\left[1 - (d/D)^{2}\right]^{\frac{1}{2}}} - \frac{d}{D} \right\},$$
(7)

where d is the diameter of revolution. One can show⁷ that any potential function Ψ that is continuous in $\nabla \Psi$ and equal to the exact solution Φ far from the particle will give rise to a current distribution which has an energy dissipation greater than or equal to that of the true solution. Thus, the exact solution Φ will give the maximum resistance (i.e., F), and hence, Eq. (7) will always be smaller than the true solution, converging to the true value as $(d/D)^3 \rightarrow 1$. [For an oblate spheroid of $\epsilon = 2$, Eq. (7) yields a value of F only 5.3% below Smythe's numerical result for d/D = 0.95.]

Finally, mention should be made of the assumption that the particle (spheroid) travels on the center line. Happel and Brenner⁸ state that there is no preferred path for a particle traveling through a pore, and because of Brownian motion, the exact result for F must include all

TABLE I. A numerical comparison of the theory of DeBlois and Bean F_4 with Symthe's analysis F_5 , and DeBlois and Bean's fit of their experimental results F_6 .

	$(d/D)^3$	F_4	F_5	F_6	
	0.001	1.001269	1.000797		1
	0.005	1.006369	1.004008	1.0036	
	0.010	1.012797	1.008055	1.0073	
	0.050	1.066325	1.041728	1.036	
	0.100	1.14	1.087354	1.073	
195.100	0.500	2.31	1.686712	1.36	

orientations and radial positions for the particle. How. ever, Fig. 1 indicates that the analytical model (F_{s}) describes the system reasonably well, at least for spheres for which there are no orientation effects.

This work was supported in part by a grant from the Office of Saline Water, U. S. Department of the Interior. J. L. Anderson was the recipient of a National Institutes of Health Research Fellowship. We would like to acknowledge the very beneficial discussions we have had with Dr. C. P. Bean on various aspects of membrane transport.

¹ R. W. DeBlois and C. P. Bean, Rev. Sci. Instrum. 41, 909 (1970).

² H. E. Kubitschek, Research (London) 13, 128 (1960).
 ³ W. R. Smythe, Phys. Fluids 4, 756 (1961).

⁴ W. R. Smythe, Phys. Fluids 7, 633 (1964). ⁵ E. C. Gregg and K. D. Steidley, Biophys. J. 5, 393 (1965).

⁶ Note that the pore diameter in DeBlois and Bean's membrane was determined by matching their theoretical equation (F_4) to their measured resistive pulses for a range of particle diameters. If F5 were used to fit the experimental results the coefficient in F_6 would probably show a slight change, and, hence, the agreement between F_5 and F_6 in Fig. 1 would reflect this change.

⁷ J. C. Maxwell, A Treatise on Electricity and Magnetism (Academic Reprints, Stanford, California, 1953), 3rd ed., Vol. 1, pp. 424, 429. ⁸ J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics

(Prentice-Hall, Englewood Cliffs, N. J., 1965), pp. 205-207.

Subnanosecond Switch for Use in Shock Wave Experiments*

T. T. COLE AND J. W. LYLE

Lawrence Radiation Laboratory, University of California, Livermore, California 94550

(Received 25 January 1971; and in final form, 26 March 1971)

SUBNANOSECOND selenium switch has been developed for use in shock wave experiments (see Fig. 1). Bulk selenium makes a transition to the metallic state at a pressure of 128 kilobars, with a resistivity decreasing by a factor of about 1011 from the value at atmospheric pressure.^{1,2} A shock wave traversing the selenium film in a direction normal to the film induces the transition.

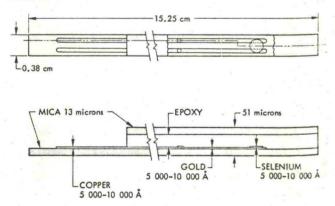


FIG. 1. Construction of the selenium switch.